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Abstract
Damping of multiphoton Rabi oscillations due to a finite lifetime of photons is
investigated using an algebraic method of the solution of the master equation.
The time dependence of the probability of electron transitions between atomic
levels is evaluated. In a regime of weak atom–photon coupling (a coupling
constant smaller than the photon decay rate), the spontaneous emission of
many photons from a single electron transition due to the interaction with a
resonant light is found. Thus, a multiphoton counterpart of the Purcell effect
is predicted.

PACS numbers: 42.50.Hz, 32.80.Wr, 33.80.Wz, 03.65.Yz

1. Introduction

The Purcell effect of the spontaneous emission from an atom being in resonance with a damped-
photon field is utilized for building sources of highly coherent photons [1]. Much attention
has recently been paid to this effect due to need of single-photon sources emitting almost
indistinguishable photons in consecutive pulses for application in the quantum-information
processing and in the quantum communication [2, 3]. One can expect that the damping of
photons being in a multiphoton resonance with the atom would result in the spontaneous
emission of many almost identical photons from a single-electron transition. Using such a
multiphoton Purcell effect, one would be able to increase the intensity of the coherent radiation.
This perspective is interesting for the emission from natural or artificial atoms interacting with
a cavity mode, [4, 5], since the cavity capacity has to be small (the light has to be spatially
confined) in order to ensure an effective coupling of the light to the matter.

Usually, the multiphoton transitions (especially multiphoton Rabi oscillations reported
in [7] to be observed) are described assuming the Hamiltonian of the atom to be periodic in
time (allowing the use of the Floquet theory) [8]. Thus, the electromagnetic field is treated
as a classical one. However, in order to include a dissipation from the photon subsystem,
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the consideration of the interaction of the atom with a quantum field is necessary. Since
perturbative methods are inapplicable to sequential photon processes, an algebraic solution of
quantum dissipative equations is needed for their description. In the present paper, I apply
an algebraic treatment of the master equation analysed in [9] equivalent to the formalism
developed in [10] (known as ‘thermo-field dynamics’). A description within a rigged-Fock-
space formulation of the dissipative quantum mechanics, [11], is another proposal which has
been found to reproduce some results of scattering matrix or Green-function methods [12, 13].
I include a finite lifetime of photons into the description of multiphoton transitions in the
framework of the rigged-Fock-space formalism showing that the description is equivalent to
the master-equation approach. The photon damping is found to lead to the damping of the
multiphoton Rabi oscillations in a regime of strong electron-N-photon coupling (of a photon
lifetime long compared to the inversion of an effective electron–photon interaction energy) or
to the multiphoton Purcell effect in a relevant weak-coupling regime.

The present description can be used for different natural or artificial two-level systems.
In particular, the quantum dots are recommended for observation of the highly coherent
Purcell radiation because of their high stability compared to atoms, which results in a very
small broadening of the emission line [3, 6]. However, since it is difficult to achieve an
intense coherent light of a frequency smaller than the energy-level separation of the electron
in artificial atoms, one can couple a quantum dot to an artificial molecule. This possibility
was considered in [14].

In section 2, the model of an atom interacting with a photon field is presented and solved
for the regime of the electron-N-photon resonance. In section 3, the consequences of the
solution for the electron-transition probability are examined. Final conclusions are made in
section 4.

2. Model and its solution

The multiphoton Rabi oscillations have been observed in a system of an atom interacting with
an intense field periodic in time [7]. The dynamics of the system can be described using the
second-quantization Hamiltonian,

H =
2∑

j=1

[ωj + 2Fj cos(�t)]a†
j aj +

(
Fa

†
1a2 + H.c.

)
, (1)

where a
(†)
1 , a

(†)
2 denote annihilation (creation) operators of the electron on the first and second

energy levels and � denotes the field frequency. The coupling coefficients Fj relate to the
overlap of the electronic wavefunctions with the field. When we consider the coupling to a
classical electro-magnetic field, the proportional to Fj terms in (1) result from the dependence
of the electron kinetic energy on the vector potential. We do not specify the interaction
constant F related to mutual overlapping of the wavefunctions of both electronic levels. For
instance, this overlap can be introduced applying a static electric field when there is a non-zero
transition dipole moment. Using the unitary transformation of the dynamical variables

aj (t) = exp(−i2Fj sin(�t)/�)ãj (t), (2)

one finds that their equations of motion

i ˙̃a1 = ω1ã1 + F exp(i2(F1 − F2) sin(�t)/�)ã2

i ˙̃a2 = ω2ã2 + F ∗ exp(i2(F2 − F1) sin(�t)/�)ã1,
(3)

belong to the class of equations solvable within a method developed in [8]. It was shown in
[7] that (3) can describe the multiphoton Rabi oscillations when the coupling term represents a
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perturbation. Then, for ω2 −ω1 = N�, one neglects in (3) terms representing non-conserving
energy processes arriving at

i ˙̃a1 = ω1ã1 + FN eiN�t ã2, i ˙̃a2 = ω2ã2 + F ∗
N e−iN�t ã1, (4)

where

FN = F

[
1

N !

(
F1 − F2

�

)N

− 1

(N + 1)!

(
F1 − F2

�

)N+2

+ · · ·
]

. (5)

This approximation has left the degeneracy of the quasi-energy levels in the Floquet
Hamiltonian of [7]. The solution of (4) is known to result in the oscillations of the probability
of finding the electron in one of its two states with the frequency {(ω2 − ω1 − N�)2 +
4|FN |2}1/2/2.

In order to include the interaction of the photon field with an environment, we perform
its quantization writing the Hamiltonian in the form

H =
2∑

j=1

[ωj + F ′
j (b + b†)]a†

j aj + �′b†b +
(
Fa

†
1a2 + H.c.

)
. (6)

Here b(†) denotes the photon annihilation (creation) operator. We introduce a finite photon
lifetime into the description writing the master equation (see the appendix). We intend to
study quantum-transition probabilities using a Gamow algebra of operators [12, 15] whose
equations of motion are found in the appendix to be similar to the equations of motion of
Fock-space vectors. In the relevant rigged-Fock-space Hamiltonian

H =
2∑

j=1

[
ωj + F ′

j

(
bout + b†

in

)]
a
†
j inajout + �b†

inbout + Fa
†
1ina2out + F ∗a†

2ina1out, (7)

the photon frequency � is complex, (� = �′−i�′′), unlike in (1)–(5). The photon annihilation
and creation operators bout and b

†
in commute to unity while the electron operators ajout, a

†
j in

can be considered as commuting or anti-commuting to unity operators since we assume that
there is only one electron in the system. They create the Gamow vectors of decaying states
vanishing (left vectors) or diverging (right vectors) with the increase of time.

We perform a canonical (non-unitary) transformation Õ ≡ �O�∗ of any Gamow-algebra
operator O analogous to the transformation (2) in order to diagonalize the adiabatic part of the
Hamiltonian. Here the operation (·)∗ ≡ [(·)†]′ is defined as the conjunction of the Hermitian
coupling—denoted by (·)† and of the complex conjugate of the particle frequencies—denoted
by (·)′. It takes the form � = es , where

s =
2∑

j=1

F ′
j

�
a
†
j inajout

(
bout − b†

in

)
, (8)

and thus �∗ = e−s . Via the relations

ajout = e−η̃j ãjout, a
†
j in = ã

†
j in eη̃j , ãjoutã

†
j in = ajouta

†
j in,

b
(†)
out(in) = b̃

(†)
out(in) −

2∑
j=1

F ′
j

�
ã
†
j inãjout, (9)

where η̃j = −F ′
j /�

(
b̃out − b̃

†
in
)
, and via the identities

ajouta
†
j inajout = ajout, a

†
j inajouta

†
j in = a

†
j in, a1outa

†
2in = a2outa

†
1in = 0 (10)
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satisfied for a one-electron system, we transform the Hamiltonian into

H =
2∑

j=1

ω̃j ã
†
j inãjout + �b̃†

inb̃out + F ã
†
1in eη̃1−η̃2 ã2out + F ∗ã†

2in eη̃2−η̃1 ã1out. (11)

Here ω̃j = ωj − F ′2
j

/
�. Similarly as in the above ‘semi-classical’ treatment (4)–(5), we

reduce the last term of (11) neglecting the processes non-conserving the energy. Furthermore,
since, for Re(ω̃2 − ω̃1 − N�) = 0, the most probable energy-conserving process results from
the interaction term of the form F−

N b̃
†N
in ã

†
1inã2out + F +

N ã
†
2inã1outb̃

N
out, where

F−
N ≡ F

N !

(
F ′

1 − F ′
2

�

)N

, F +
N ≡ F ∗

N !

(
F ′

1 − F ′
2

�

)N

, (12)

we neglect other processes. The bigger N, the better the validity of this approximation.
Neglecting the perturbation term in the last of the following equations of motion

(equation (13c))

i ˙̃a1out = ω̃1ã1out + F−
N b̃†N

in ã2out (13a)

i ˙̃a2out = ω̃2ã2out + F +
N ã1outb̃

N
out (13b)

i ˙̃bout = �b̃out + F−
N Nb̃†N−1

in ã
†
1inã2out ≈ �b̃out (13c)

one obtains an approximation relevant for studying the electron-level occupation (but not for
studying the photon population). Therefore, equation (13c) becomes independent of (13a)
and (13b). In order to diagonalize (13a) and (13b), we multiply them by b̃

(†)N/2
out(in) and find

i
d

dt

(
b̃

N/2
out ã1out

) = (ω̃1 + N�/2)
(
b̃

N/2
out ã1out

)
+ F−

N

(
b̃

N/2
out b̃†N/2

in

)(
ã2outb̃

†N/2
in

)
(14a)

i
d

dt

(
ã2outb̃

†N/2
in

) = (ω̃2 − N�/2)
(
ã2outb̃

†N/2
in

)
+ F +

N

(
b̃

N/2
out ã1out

)(
b̃

N/2
out b̃†N/2

in

)
. (14b)

Two new operators defined as

B̃j = Aj1
(
b̃

N/2
out ã1out

)
+ Aj2

(
ã2outb̃

†N/2
in

)
(15)

satisfy the equations of motion

i ˙̃Bj = �jB̃j (16)

with the transformation coefficients fulfilling the conditions{
A11(�1 − ω̃1 − N�/2) = A12F

+
N

(n̂+N)!
(n̂+N/2)!

A12(�1 − ω̃2 + N�/2) = A11F
−
N

(n̂+N/2)!
n̂!

,

{
A21(�2 − ω̃1 − N�/2) = A22F

+
N

(n̂+N)!
(n̂+N/2)!

A22(�2 − ω̃2 + N�/2) = A21F
−
N

(n̂+N/2)!
n̂!

,

(17)

where n̂ ≡ b̃
†
inb̃out. Here we used the identity b̃

N/2
out b̃

†N/2
in = (n̂ + N/2)!/n̂!. Solving (17), for

�1 = 1

2

{
ω̃1 + ω̃2 −

[
(ω̃2 − ω̃1 − N�)2 + 4F +

NF−
N

(n̂ + N)!

n̂!

]1/2
}

,

�2 = 1

2

{
ω̃1 + ω̃2 +

[
(ω̃2 − ω̃1 − N�)2 + 4F +

NF−
N

(n̂ + N)!

n̂!

]1/2
}

,

(18)
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one arrives at

A11 = A, A12 = A
F−

N (n̂ + N/2)!

(�1 − ω̃2 + N�/2)n̂!
,

A21 = B
F +

N(n̂ + N)!

(�2 − ω̃1 − N�/2)(n̂ + N/2)!
, A22 = B.

(19)

3. Results

The probability of the electron transition from the lower energy level to the higher one (1 → 2)

is proportional to the module square of the scalar product

〈0|bM+N
out (t)a1out(t)a

†
2inb

†M
in |0〉 = M!

(M + N/2)!

×〈0|b̃M+N/2
out (t)

(
b̃

N/2
out ã1out

)
(t) e−η̃1(t) eη̃2

(
ã
†
2inb̃

N/2
out

)
b̃†M+N/2

in |0〉, (20)

where M relates to the intensity of the photon field. Inverting the matrix of coefficients Aij ,
we are able to evaluate its time dependence. Via

(A−1)11 = (�2 − ω1 − N�/2)(�1 − ω2 + N�/2)

A
[
(�2 − ω1 − N�/2)(�1 − ω2 + N�/2) − F +

NF−
N (n̂ + N)!/n̂!

] ,

(A−1)12 = − (�2 − ω1 − N�/2)F−
N (n̂ + N/2)!/n̂!

B
[
(�2 − ω1 − N�/2)(�1 − ω2 + N�/2) − F +

NF−
N (n̂ + N)!/n̂!

] ,

(A−1)21 = − (�1 − ω2 + N�/2)F +
N(n̂ + N)!/(n̂ + N/2)!

A
[
(�2 − ω1 − N�/2)(�1 − ω2 + N�/2) − F +

NF−
N (n̂ + N)!/n̂!

] ,

(A−1)22 = (�2 − ω1 − N�/2)(�1 − ω2 + N�/2)

B
[
(�2 − ω1 − N�/2)(�1 − ω2 + N�/2) − F +

NF−
N (n̂ + N)!/n̂!

] ,

(21)

we find

〈0|bM+N
out (t)a1out(t)a

†
2inb

†M
in |0〉 = − M!

(M + N/2)!
exp(−i(ω̃1 + ω̃2 + N�)t)

×〈0|b̃M
out(t) e−η̃1(t) eη̃2 b̃†M

in |0〉2i sin

{[
(ω̃2 − ω̃1 − N�)2 + 4F +

NF−
N

(M + 3N/2)!

(M + N/2)!

]1/2

t/2

}

×
2F−

N
(M+3N/2)!
(M+N/2)!

{
ω̃2 − ω̃1 − N� +

[
(ω̃2 − ω̃1 − N�)2 + 4F +

NF−
N

(M+3N/2)!
(M+N/2)!

]1/2
}

{
ω̃2 − ω̃1 − N� +

[
(ω̃2 − ω̃1 − N�)2 + 4F +

NF−
N

(M+3N/2)!
(M+N/2)!

]1/2
}2

+ 4F +
NF−

N
(M+3N/2)!
(M+N/2)!

.

(22)

The average on the right-hand side of (22) can be evaluated using the Feynman’s
disentanglement method relevant to an exactly solvable ‘independent-boson model’ [16, 17].
It was applied to a similar Gamow algebra in [13]. The result is

〈0|b̃M
out(t) e−η̃1(t) eη̃2 b̃†M

in |0〉 = exp

{
−iM�t − F ′2

1 + F ′2
2

2�2
+

F ′
1F

′
2

�2
e−i�t

}

×
M∑

j=0

(F ′
1 ei�t − F ′

2)
j (−F ′

1 e−i�t + F ′
2)

j

�2j

M!

j !

(
M

j

)
. (23)

Let us consider first the strong-coupling regime [Im(ω̃2 − ω̃1 − N�)]2 �
4
∣∣F +

NF−
N

∣∣ (M+3N/2)!
(M+N/2)! (the nomenclature is similar as, e.g. in [18]). In this case, the amplitude of
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the probability of finding the system with the electron created on the lower atomic level in the
state with the electron on the higher level P(t) = ∣∣〈0|bM+N

out (t)a1out(t)a
†
2inb

†M
in |0〉∣∣2/

[M!(M +

N)!] oscillates with the frequency
[∣∣F +

NF−
N

∣∣ (M+3N/2)!
(M+N/2)!

]1/2
. This frequency increases with the

parameter of the photon-field intensity M. The damping rate of P(t) equal to −Im[ω̃1 + ω̃2 +
(M + N)�] is a sum of the decay rate of (M + N)-photon state and of the proper damping rate
of the oscillations of the electron-level occupation equal to −Im(ω̃1 + ω̃2). From the form of
(23), we predict the dephasing of the oscillations taking place in the characteristic time equal
to �′′−1.

In the opposite case of the weak-coupling regime [Im(ω̃2 − ω̃1 − N�)]2 >

4
∣∣F +

NF−
N

∣∣ (M+3N/2)!
(M+N/2)! , another possible solution of the equations of motion is preferred. Taking

�1 = �2 = 1

2

{
ω̃1 + ω̃2 +

[
(ω̃2 − ω̃1 − N�)2 + 4F +

NF−
N

(n̂ + N)!

n̂!

]1/2
}

(24)

ensures that P(t) does not diverge with time (and leads to P(t) = 0). We study the
probability of the transition of the system from the state with the electron on the higher
level P ′(t) = 1 − |〈0|bM

out(t)a2out(t)a
†
2inb

†M
in |0〉|2/(M!)2. The scalar product in this expression

takes the form

〈0|bM
out(t)a2out(t)a

†
2inb

†M
in |0〉 = (M!)2

[(M + N/2)!]2

×〈0|b̃M+N/2
out (t)

(
ã2outb̃

†N/2
in

)
(t) e−η̃2(t) eη̃2

(
b̃

N/2
out ã

†
2in

)
b̃†M+N/2

in |0〉

= 〈0|b̃M
out(t) e−η̃2(t) eη̃2 b̃†M

in |0〉 exp

(
−i

1

2

{
ω̃1 + ω̃2 + N�

+

[
(ω̃2 − ω̃1 − N�)2 + 4F +

NF−
N

(M + 3N/2)!

(M + N/2)!

]1/2
}

t

)
. (25)

Evaluating the first factor on the right-hand side of (25), one finds

〈0|b̃M
out(t) e−η̃2(t) eη̃2 b̃†M

in |0〉 = exp

{
−iM�t − F ′2

2

�2
(1 − e−i�t )

}

×
M∑

j=0

F
′2j

2 (ei�t − 1)j (−e−i�t + 1)j

�2j

M!

j !

(
M

j

)
. (26)

Neglecting the damping rate of (26) resulting from the decay of M-photon state, we find from
P ′(t) the probability of occupation of the higher electron level. Its damping rate

� = (M + 3N/2)!
∣∣F +

NF−
N

∣∣
(M + N/2)!N�′′ (27)

relates to the time of the emission of N photons from the atom 1/(2�). Thus, we predict a
multiphoton Purcell effect. According to the classical Purcell result [1, 18], the emission time
is inversely proportional to the photon lifetime and to the square of the effective constant of
the electron–photon coupling. The emission time decreases with increase of the light intensity
(with increase of the parameter M). Let us mention that, for the coherent sources of photons
based on the multiphoton Purcell effect, the time of the electron decoherence resulting from
(26) which is equal to �′′−1 is expected to be long compared to the emission time.
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4. Conclusions

I have considered the interaction of the two-level atom with a damped-photon field finding
the damped oscillations of the electron-transition probability or the spontaneous multiphoton
emission, depending on the ratio of the strength of the effective atom–photon interaction and
the photon lifetime.

Unlike for linearly coupled optical systems displaying usual Rabi oscillations or Purcell
effect, a dephasing of their multiphoton counterparts is inherent in our system. From (23) and
(26), the dephasing takes the time equal to the twice of the photon lifetime. Let us note that
both multiphoton effects disappear when the interaction constants F ′

1 and F ′
2 are equal. On

the other hand, following (23), one can minimize the dephasing of Rabi oscillations when the
parameter F ′

1 is equal to zero. Similarly, for F ′
2 = 0, the decoherence of the Purcell radiation

disappears following (26).
In [7], there was proposed an atom for which the ratio F ′

1/F
′
2 has been changed using the

static electric field, which gives possibility of switching off the Rabi oscillations. Applying
artificial atoms would enable one to control the coupling strength via the material of which
the quantum dot is built.
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Appendix. Relation of the formalism to master equation

The knowledge of the relation of scalar products of Gamow vectors to scalar products of
Fock-space vectors would make clear the interpretation of averages over the decaying states.
We find it for the two-level atom interacting with a monochromatic light based on an algebraic
method of solution of the master equation described in [9].

Let us consider the equation of motion of the density operator of our system dρ/dt =
Lρ = i−1[H, ρ] + Lρ, where L denotes a dissipator. Following [9], for any operator A we
define left (right) super-operators A. (.A) such that A.ρ = Aρ (.Aρ = ρA), and

A.B. = AB., .A.B = .BA, .BA. = A..B. (A.1)

Using them, one can write the Liouville operator as

L = i−1(H. − .H) + L, (A.2)

where, for our system in which the dissipation results in damping of photons,

L = �′′(b..b† − 1
2b†b. − 1

2 .b†b
)
. (A.3)

A canonical transformation of the creation (annihilation) super-operators

A+
j = a

†
j . − .a

†
j , A−

j = aj .,

Ã+
j = .aj − aj ., Ã−

j = .a
†
j ,

B+ = b†. − .b†, B− = b.,

B̃+ = .b − b., B̃− = .b†

(A.4)

leads to the new form of the Liouvillian

L = i−1(H − H̃) + i−1(H′ − H̃′), (A.5)
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where

H =
2∑

j=1

[ωj + F ′
j (B− + B+)]A+

jA−
j + �B+B− +

(
FA+

1A−
2 + F ∗A+

2A−
1

)
,

H′ =
2∑

j=1

F ′
j

[
(B− + B+)Ã−

j A
−
j + B̃−(

A+
jA−

j + Ã−
j A

−
j

)]
.

(A.6)

The operator H̃(H̃′) differs from H(H′) by changing A±
j ↔ Ã±

j ,B± ↔ B̃± and � ↔ �∗,
F ↔ F ∗. In the space of the vectors

Rmno;m′n′o′ ≡ A+m
1 A+n

2 B+oÃ+m′
1 Ã+n′

2 B̃+o′ |0〉〈0|, (A.7)

we consider those of m′ = n′ = o′ = 0 (and m + n = 1 or m + n = 0). Since

H̃Rmno;000 = H′Rmno;000 = H̃′Rmno;000 = 0, (A.8)

we find LRmno;000 = i−1HRmno;000 and, thus, any combination of the vectorsRmno;000 satisfies
the Schrodinger-like equation with a non-Hermitian Hamiltonian however. On the other hand,
since Rmno;000 = a

†m
1 a

†n
2 b†o.|0〉〈0|, the vectors Rmno;000|0〉 create a basis of the Fock space.

Thus, we have found the dynamics of the Fock-space vectors to be generated by a non-
Hermitian Hamiltonian of the form similar to the Gamow Hamiltonian (7). All the scalar
products of the Fock-space vectors can be expressed via scalar products of Gamow vectors.
Similar to the above considerations show that LR000;mno = −i−1H̃R000;mno and the dynamics
of the conjugated Fock vectors which can be decomposed into the basis of 〈0|R000;mno is
generated by another non-Hermitian Hamiltonian.

Let us mention that introducing the operators (A.4) enables one to study the dissipative
dynamics with one generator of the translation in time unlike some other methods using
effective non-Hermitian Hamiltonians (the so-called quantum jump approach [19] including
quantum trajectory [20] or stochastic Schrodinger-equation [21] methods). In that approach
non-Hermitian Hamiltonians are generators of infinitesimal translation only and the evolution
operator is an integral operator.
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